Discrete hedging under piecewise linear risk minimization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete piecewise linear functions

The concept of permutograph is introduced and properties of integral functions on permutographs are established. The central result characterizes the class of integral functions that are representable as lattice polynomials. This result is used to establish lattice polynomial representations of piecewise linear functions on R and continuous selectors on linear orders.

متن کامل

Global Minimization via Piecewise-Linear Underestimation

Given a function on Rn with many multiple local minima we approximate it from below, via concave minimization, with a piecewise-linear convex function by using sample points from the given function. The piecewise-linear function is then minimized using a single linear program to obtain an approximation to the global minimum of the original function. Successive shrinking of the original search r...

متن کامل

Hedging under multiple risk constraints

Motivated by the asset-liability management of a nuclear power plant operator, we consider the problem of finding the least expensive portfolio which outperforms a given set of stochastic benchmarks at a sequence of future dates. For a specified loss function, the shortfall with respect to each of the benchmarks weighted by this loss function must remain bounded in expectation by a given thresh...

متن کامل

Discrete time hedging with liquidity risk

We study a discrete time hedging and pricing problem in a market with liquidity costs. Using Leland’s discrete time replication scheme [Leland, H.E., 1985. Journal of Finance, 1283–1301], we consider a discrete time version of the Black–Scholes model and a delta hedging strategy. We derive a partial differential equation for the option price in the presence of liquidity costs and develop a modi...

متن کامل

Hedging Under Uncertainty: Regret Minimization Meets Exponentially Fast Convergence

This paper examines the problem of multi-agent learning in N -person non-cooperative games. For concreteness, we focus on the socalled “hedge” variant of the exponential weights (EW) algorithm, one of the most widely studied algorithmic schemes for regret minimization in online learning. In this multi-agent context, we show that a) dominated strategies become extinct (a.s.); and b) in generic g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Risk

سال: 2003

ISSN: 1465-1211

DOI: 10.21314/jor.2003.079